The Evaluation of Random Subgraphs of the Cube

نویسندگان

  • Béla Bollobás
  • Yoshiharu Kohayakawa
  • Tomasz Luczak
چکیده

Let (Qt) M 0 be a random Q -process, that is let Q0 be the empty spanning subgraph of the cube Q n and, for 1 ≤ t ≤ M = nN/2 = n2n−1, let the graph Qt be obtained from Qt−1 by the random addition of an edge of Q not present in Qt−1. When t is about N/2, a typical Qt undergoes a certain ‘phase transition’: the component structure changes in a sudden and surprising way. Let t = (1 + )N/2 where is independent of n. Then all the components of a typical Qt have o(N) vertices if < 0, while if > 0 then, as proved by Ajtai, Komlós and Szemerédi, a typical Qt has a ‘giant’ component with at least α( )N vertices, where α( ) > 0. In this note we give essentially best possible results concerning the emergence of this giant component close to the time of phase transition. Our results imply that if η > 0 is fixed and t ≤ (1 − n−η)N/2 then all components of a typical Qt have at most n vertices, where β(η) > 0. More importantly, if 60(logn)/n ≤ = (n) = o(1) then the largest component of a typical Qt has about 2 N vertices, while the second largest component has order O(n −2). Loosely put, the evolution of a typical Q-process is such that shortly after time N/2 the appearance of each new edge results in the giant component acquiring 4 new vertices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Phase Transition for Random Subgraphs of the n-cube

We describe recent results, obtained in collaborations with C. Borgs, J.T. Chayes, R. van der Hofstad and J. Spencer, which provide a detailed description of the phase transition for random subgraphs of the n-cube. Résumé. Nous présentons des résultats récents qui donnent une description détaillée de la transition de phase des sous-graphes aléatoires du n-cube. Ces résultats sont obtenus en col...

متن کامل

Random Subgraphs Of Finite Graphs: III. The Phase Transition For The n-Cube

We study random subgraphs of the n-cube {0, 1}n, where nearest-neighbor edges are occupied with probability p. Let pc(n) be the value of p for which the expected cluster size of a fixed vertex attains the value λ2n/3, where λ is a small positive constant. In two previous papers, we developed a general theory of random subgraphs of high-dimensional finite connected transitive graphs. In this pap...

متن کامل

Spanning subgraphs of Random Graphs (A research problem)

We propose a problem concerning the determination of the threshold function for the edge probability that guarantees, almost surely, the existence of various sparse spanning subgraphs in random graphs. We prove some bounds and demonstrate them in the cases of a d-cube and a two dimensional lattice. B. Bollobás (cf. e.g., [3]) raised the following problem: Let G be a random graph with n = 2d ver...

متن کامل

Random subgraphs of finite graphs. Part III: The phase transition for the n-cube

We study random subgraphs of the n-cube {0, 1}n, where nearest-neighbor edges are occupied with probability p. Let pc(n) be the value of p for which the expected cluster size of a fixed vertex attains the value λ2n/3, where λ is a small positive constant. Let = n(p − pc(n)). In two previous papers, we showed that the largest cluster inside a scaling window given by | | = Θ(2−n/3) is of size Θ(2...

متن کامل

On Spanning Structures in Random Hypergraphs

In this note we adapt a general result of Riordan [Spanning subgraphs of random graphs, Combinatorics, Probability & Computing 9 (2000), no. 2, 125–148] from random graphs to random r-uniform hypergaphs. We also discuss several spanning structures such as cube-hypergraphs, lattices, spheres and Hamilton cycles in hypergraphs.

متن کامل

Stratiied Random Walks on the N-cube

In this paper we present a method for analyzing a general class of ramdom walks on the n-cube (and certain subgraphs of it). These walks all have the property that the transition probabilities depend only on the level of the point the walk is at. For these walks, we derive sharp bounds on their mixing rates, i.e., the number of steps required to guarantee that the resulting distribution is clos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Random Struct. Algorithms

دوره 3  شماره 

صفحات  -

تاریخ انتشار 1992